Multi-modal Battle Royale optimizer

dc.contributor.authorÇiçek, K. Dilşad
dc.contributor.authorAkan, Taymaz
dc.contributor.authorBayat, Oğuz
dc.date.accessioned2024-05-06T11:25:58Z
dc.date.available2024-05-06T11:25:58Z
dc.date.issued2024en_US
dc.departmentMeslek Yüksekokulları, Meslek Yüksekokulu, Bilgisayar Programcılığı Programıen_US
dc.description.abstractMultimodal optimization poses a challenging problem in the field of optimization as it entails the discovery of multiple local and global optima, unlike unimodal optimization, which seeks a single global solution. In recent years, the significance of addressing multimodal optimization challenges has grown due to the real-world complexity of many problems. While numerous optimization methods are available for unimodal problems, multimodal optimization techniques have garnered increased attention. However, these approaches often grapple with a common issue: the determination of the niching parameter, necessitating prior knowledge of the problem space. This paper introduces a novel multimodal optimization approach that circumvents the need for prior problem space knowledge and avoids the challenge of predefining the niching parameter. Building upon the Battle Royal Optimization (BRO) algorithm, this extended version formulates a multimodal solution by utilizing Coulomb's law to identify suitable neighbors. The incorporation of Coulomb's law serves the dual purpose of identifying potential local and global optima based on fitness values and establishing optimal distances from solution candidates. A comparison study was done between the MBRO and seven well-known multimodal optimization algorithms using 14 benchmark problems from the CEC 2013 and CEC 2015 competitions to see how well it worked. The experimental results underscore MBRO's proficiency in successfully identifying most, if not all, local and global optima, positioning it as a superior solution when compared to its competitors.en_US
dc.identifier.citationÇiçek, K. D., Akan, T., Bayat, O. (2024). Multi-modal Battle Royale optimizer. Cluster Computing. 10.1007/s10586-024-04399-2en_US
dc.identifier.issn1386-7857
dc.identifier.scopus2-s2.0-85190412683
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12939/4679
dc.identifier.wosWOS:001204689300004
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÇiçek, K. Dilşad
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofCluster Computing
dc.relation.isversionof10.1007/s10586-024-04399-2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBattle Royale optimizationen_US
dc.subjectLocal searchen_US
dc.subjectMulti-modal optimizationen_US
dc.titleMulti-modal Battle Royale optimizer
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
s10586-024-04399-2.pdf
Boyut:
509.35 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: